新祥旭考研官网欢迎您!


2016考研数学知识点:排列

【新祥旭考研官方网站】 / 2015-10-19

       1.元素分析法

  【例】求7人站一队,甲必须站在当中的不同站法。

  【解析】要求甲必须站在当中,因此只需对其它6人全排列即可,不同的站法共有 种。

  2.位置分析法

  【例】求7人站一队,甲、乙都不能站在两端的不同站法。

  【解析】先站在两端的位置有 种站法,再站其它位置有 种站法,因此所有不同的站法共有 种站法。

  3.间接法

  【例】求7人站一队,甲、乙不都站两端的不同站法。

  【解析】考虑对立事件为甲乙都站在两端,共有 种站法;7人站成一队所有的站法共 种,所以甲乙不都站两端的不同站法共 种。

  4.捆绑法

  【例】求7人站一队,甲、乙、丙三人都相邻的不同站法。

  【解析】先将甲、乙、丙看成一个人,即相当于5个人站成一队,有 种站法,再对这三个人全排列即得所有的不同站法共 种。

  5.插空法

  【例】求7人站一队,甲、乙两人不相邻的不同站法。

  【解析】先将其它五人全排列,然后将甲、乙两人插入所产生的6个空中即可,共 种不同的站法。

  6.留出空位法

  【例】求7人站一队,甲在乙前,乙在丙前的不同站法。

  【解析】由于甲、乙、丙三人的顺序一定,因此只要其余4人站好,这7个人就站好了,不同的站法共有 种。

  7.单排法

  【例】求9个人站三队,每排3人的不同站法。

  【解析】由于对人和对位置都无任何的要求,因此,相当于9个人站成一排,不同的站法显然共有 种。

 

全方位权威辅导,考研复试效率高

面授一对一
在线一对一
魔鬼集训营
咨询课程 预约登记

以效果为导向    以录取为目标

添加微信咨询考研问题
北清考研定制 985考研定制 211考研定制 学硕考研定制 专硕考研定制 北京考研私塾
x