线性代数的出题点近几年很稳定,分别就客观题和解答题进行说明。客观题一般考查行列式的性质与计算、矩阵的性质与运算,解答题一般为求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
相似对角化理论重点分布:
1.求抽象类矩阵的特征值和特征向量,并进一步求出矩阵;
2.根据特征值和特征向量求矩阵中的参数;
3.矩阵相似对角化理论;
4.实对称矩阵的正交相似对角化理论;
【例题】2014年真题(适用数一、数二、数三)
【例题】2014年真题(适用数一、数二、数三)