暑假将至,15考研人正在紧张的复习中,辅导老师提醒大家,暑假中有大量自由支配的时间,因此在备考考研数学时要重点突破高等数学部分。按照往年情况,考研数学3个部分中高等数学所占比重是最大的,数一、三中是56%,数二中78%,所以高等数学对数学总体成绩的高低就显得特别重要。
高等数学重点知识
函数、极限、连续部分在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。一元函数微分学是基础亦是重点。一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。微分中值定理也是重点掌握的内容,曲率部分,仅数一考生需要掌握,但是并不是重点,在考试中很少出现,记住相关公式即可。多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。多元函数的应用也是重点,主要是条件极值和最值问题。方向导数、梯度,空间曲线、曲面的切平面和法线,仅数一考生需要掌握,但是不是重点,记忆相关公式即可。
积分学部分,主要以计算题形式出现,我们要知道7类积分之间的关系以及基本的计算方法和联系这7类积分之间的4大公式。向量代数与空间解析几何部分:这部分内容只对考数一的同学要求,但不是重点。从近些年考研真题来看,考查很少,偶尔以选择、填空的形式出现。五、无穷级数部分:这部分内容对数二的考生不作要求。数一、三的考生需要掌握两个重点:一是常数项级数性质问题,尤其是如何判断级数的敛散性;二是幂级数。考生要熟练掌握幂级数的收敛区间、收敛半径、和函数以及幂级数的展开问题。六、微分方程与差分方程部分:差分方程只对数三考生要求,但不是重点。这里有两个重点:一阶线性微分方程;二阶常系数齐次/非齐次线性微分方程。
高数三重门
一、重视基础
考研数学70%的题目是考基础的,包括基本概念、基本理论和基本方法。基本概念比如极限、连续、可导、可微、可积等。基本理论有单调有界准则和中值定理等。基本方法如极限的四则运算法则和罗必达法则等。从近十年考研数学真题来看,真正需要冥思苦想的偏题、难题只是少数。
二,重视计算
考研数学80%都是计算题,所以你的计算能力不过关,一定拿不到高分。很多同学学习数学时眼高手低,就喜欢看例题,看别人做好的题目。只是一味的被动的接受别人的东西,就永远也变不成自己的东西。而且考研数学题的技巧性强,同样一个题目如果用常规方法做耗费的时间比较长,在考研中我们要寻求简单的方法和技巧,达到做题准、快。这里强调的是精练,不主张搞题海战术。
三,重视归纳总结
我们在做出每一道题目的时候,都要从两方面进行分析:这道题的类型如何求解和这道题中对你而言具有价值的知识点技巧等。每做完一道题目,要明白其解题思路,对于解题过程中所用到的方法、技巧进行归纳总结,如求极限、微分中值定理的使用,二重积分的计算等等。